Endothelial Insulin and IGF-1 Receptors: When Yes Means NO
نویسندگان
چکیده
Cardiovascular (CV) disease is the leading cause of morbidity and mortality and a major driver of health care costs in patients with type 2 diabetes. Observational studies suggest that insulin resistance and hyperglycemia independently predict atherosclerosis (1,2). However, recent clinical trials have been disappointing in that intensive glycemic control does not reduce the risk of CV events in individuals with diabetes (3). Consequently, it has been suggested that therapies targeting hyperinsulinemia and/or insulin resistance (e.g., metformin) may lead to CV risk reduction (2). In addition to its metabolic actions, insulin has important vascular actions that stimulate endothelial production of nitric oxide (NO), an anti-inflammatory and antiatheroslcerotic molecule (4). In turn, endothelial insulin resistance leads to diminished glucose disposal, endothelial dysfunction, and atherosclerosis. Strategies that ameliorate endothelial insulin resistance may simultaneously augment metabolic and vascular actions of insulin, thereby reducing CV risk. However, molecular mechanisms regulating endothelial insulin action are still unclear. Elegant studies from various laboratories have elucidated insulin signaling pathways that regulate NO production in the endothelium (4). Insulin binding to its receptor increases receptor tyrosine kinase activity and results in phosphorylation of insulin receptor (IR) substrate (IRS)-1 and sequential activation of phosphatidylinositol 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase (PDK)-1. PDK-1, in turn, activates Akt, which then directly phosphorylates endothelial NO synthase (eNOS) at Ser1177, resulting in increased eNOS activity and NO production (Fig. 1). Although less potent, IGF-1, like insulin, activates the PI3K-Akt-eNOS pathway and stimulates NO production in endothelial cells (5,6). Human endothelial cells express IR, IGF-1 receptors (IGF-1R), and hybrid receptors (IR/IGF-1R) composed of heterodimers containing a ab-chain of the IR associated with a ab-chain of the IGF-1R (7). IGF-1R are more abundant (10-fold higher) than IR (5,8). IR/IGF-1R have a low affinity for insulin, but they bind IGF-1 with the same affinity as IGF-1R. However, because of the low binding affinity of insulin to IGF-1R, physiological concentrations of insulin (100–500 pmol/L) selectively activate IR to release NO and increase microvascular perfusion in vivo (6). At supraphysiological concentrations, insulin and IGF-1 cross-react with each other’s receptors, albeit at a significantly lower affinity than with their own receptors (7). In nonendothelial cells, IGF-1R expression modulates insulin signaling by altering the levels of hybrid receptors (7). Whether or not a similar dynamic affects insulin signaling in the endothelium was unknown. In this issue of Diabetes, Imrie et al. (9) demonstrate a novel role for IGF-1R in modulating insulin signaling in the endothelium. They evaluated endothelial insulin sensitivity in mice overexpressing human IGF-1R in the endothelium (hIGFREO). Aorta from hIGFREO displayed reduced basal NO release and enhanced responsiveness to vasoconstrictors. Although basal total and active eNOS levels were similar, neuronal NO synthase (nNOS) expression in endothelial cells from hIGFREO was lower when compared with wild-type mice. In hIGFREO, endothelial levels of IR/IGF-1R were increased and associated with reduced insulin, but not IGF-1–stimulated NO production and eNOS activation. Data from the current study extend and confirm previous reports from this group that have demonstrated that reducing IGF-1R and IR/IGF-1R results in improved endothelial insulin sensitivity in insulin-resistant mice (10). Taken together, these novel findings suggest that IGF-1R negatively affects insulin-stimulated NO production in the endothelium by modulating the amount of IR/IGF-1R. How does endothelial IGF-1R expression influence insulin signaling? Current models assume that IR, IGF-1R, and IR/IGF-1R are formed by random dimerization of receptor monomers (7). Consequently, relative distribution of the receptor species is determined by the monomeric ratio of IGF-1R and IR. Higher IGF-1R expression is associated with increased formation of IR/IGF-1R and a lower proportion of IR holoreceptors. Conversely, decreasing IGF-1R levels lowers the amount of IR/IGF-1R and thus a higher proportion of IR is available for ligand binding. This phenomenon does not appear to be cell-specific, since similar findings are observed in vascular smooth muscle cells, adipocytes, and osteoblasts (11–13). Likewise, fibroblasts from individuals with heterozygous IGF-1R mutation, Arg59Ter, manifest reduced IGF-1R as well as hybrid receptor expression and augmented insulin signaling (14). Thus, isolated changes in IR number may be sufficient to alter the strength of PI3K-Akt-eNOS signaling (Fig. 1). It is also possible that higher numbers of IR/IGF-1R may diminish coupling efficiency of IR to postreceptor signaling intermediates and reduce insulin responsivity. In the study by Imrie et al., insulin-stimulated eNOS phosphorylation/activation was reduced in endothelial cells from hIGFREO mice. However, insulin-stimulated Akt activation was unaffected. Thus, the molecular mechanisms From the Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; the Departments of Internal Medicine and Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and the Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri. Corresponding author: Ranganath Muniyappa, [email protected]. DOI: 10.2337/db12-0654 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 2359.
منابع مشابه
Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells.
Micro- and macroangiopathy are major causes of morbidity and mortality in patients with diabetes. Our aim was to characterize IGF-I receptor (IGF-IR) and insulin receptor (IR) in human micro- and macrovascular endothelial cells. Cultured human dermal microvascular endothelial cells (HMVEC) and human aortic endothelial cells (HAEC) were used. Gene expression was measured by quantitative real-tim...
متن کاملShort-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated control...
متن کاملReceptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta.
It has been suggested that elevated levels of insulin or insulin-like growth factors (IGFs) play a role in the development of diabetic vascular complications. Previously, we have shown a differential response to insulin between vascular cells from retinal capillaries and large arteries with the former being much more insulin responsive. In the present study, we have characterized the receptors ...
متن کاملThe vascular endothelial cell mediates insulin transport into skeletal muscle.
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-...
متن کاملInsulin resistance and IGF-I sensitivity in vascular cells - impact of hybrid receptors With special regard to diabetes
....................................................................................................................................... 1 TABLE OF CONTENTS......................................................................................................................2 ABBREVIATIONS................................................................................................................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012